Chiral matrix model for QCD

"Semi" QGP: in QCD, near the chiral phase transition, T: 130 -> 300 MeV

- 1. Chiral matrix model
- 2. Suppression of color
- 3. Dilepton production: *un*suppressed
- 4. Photon production: *strongly* suppressed
- 5. Shear viscosity: *strongly* suppressed

The Quark-Gluon Plasma near T_c

T = 0 to T ~ 130 MeV: hadronic resonance model, χ perturbation theory....

T> 300 MeV: *resum* perturbation theory

Hard Thermal Loop perturbation theory at *three* loop order Haque, Bandyopadhyay, Andersen, Mustafa, Mike Strickland, Nan Su, 1402.6907

But: in heavy ion collisions, most time is spent near T_c.

Assume Bjorken hydrodynamics: in the central plateau, $T \sim \frac{1}{\tau^{1/3}}$

 $T_f = 160 \text{ MeV}$. RHIC, $T_i = 400 \text{ MeV}$. LHC, $T_i = 600 \text{ MeV}$.

In Bjorken hydro, as $T_i \to \infty$, $\langle T \rangle \to \frac{3}{2} T_f = 215$ @ RHIC; = 227 @ LHC

Chiral matrix model for QCD

Chiral symmetry

For 3 flavors of massless quarks coupled to a gauge field,

$$\mathcal{L}^{qk} = \overline{q} \not\!\!D q = \overline{q}_L \not\!\!D q_L + \overline{q}_R \not\!\!D q_R \quad , \quad q_{L,R} = \frac{1 \pm \gamma_5}{2} q_R$$

Classically, global flavor symmetry of $SU(3)_L \times SU(3)_R \times U(1)_A$,

$$q_L \to e^{-i\alpha/2} U_L q_L$$
 , $q_R \to e^{+i\alpha/2} U_R q_R$

Simplest order parameter for χ symmetry breaking (χ SB'g): $\Phi^{ab} = \overline{q}_L^{\ bA} \ q_R^{\ aA}$ a,b... = flavor. A,B... = color

$$\Phi \to e^{+i\alpha} U_R \Phi U_L^{\dagger}$$

Quantum mechanically, axial U(1)_A is broken by instantons +.... to Z(3)_A at T=0 't Hooft instanton vertex is invariant under Z(3)_A: $\det \Phi \to \mathrm{e}^{3i\alpha} \det \Phi$

As $T \to \infty$, $U(1)_A$ approximately restored as $1/T^7 \to 9$.

Effective Lagrangians for chiral symmetry

Standard linear sigma model for Φ :

$$\mathcal{V}_{\Phi} = m^2 \operatorname{tr} \left(\Phi^{\dagger} \Phi \right) - c_A \left(\det \Phi + \text{c.c.} \right) + \lambda \operatorname{tr} \left(\Phi^{\dagger} \Phi \right)^2$$

Drop (tr $\Phi^+\Phi$)². Mass, quartic terms U(1)_A invariant, det Φ under Z(3)_A . For light but massive quarks, need to add

$$\mathcal{V}_{H}^{0} = -\operatorname{tr}\left(H\left(\Phi^{\dagger} + \Phi\right)\right)$$

Quarks generate potential in "q", so must couple Φ to quarks: $P_{L,R} = (1 \pm \gamma_5)/2$

$$\mathcal{L}_{\Phi}^{qk} = \overline{q} \left(\mathcal{D} + \mu \gamma^0 + y \left(\Phi \mathcal{P}_L + \Phi^{\dagger} \mathcal{P}_R \right) \right) q$$

Use non-perturbative potential from pure glue theory, with *same* $T_d = 270$. But with quarks, T_d is *just* a parameter in a potential, *not* deconfining T_c .

Similar to Kovacs, Szep, Wolf, 1601. 05291; they add vector mesons.

New logarithmic terms

Assume χSB 'g occurs, $\langle \Phi \rangle = \varphi$, so $m = y \varphi$.

At T = 0, u.v. divergent terms in $4 - \varepsilon$ dim.s:

M = renormalization mass scale

$$\frac{3m^4}{16\pi^2} \left(\frac{1}{\epsilon} + \log\left(\frac{M^2}{m^2}\right) \right)$$

Need to add new logarithmic term in Φ :

$$\mathcal{V}_{\Phi}^{\log} = \kappa \operatorname{tr} \left[\left(\Phi^{\dagger} \Phi \right)^{2} \log \left(\frac{M^{2}}{\Phi^{\dagger} \Phi} \right) \right]$$

To 1 loop order, $\kappa = 3y^4/(16 \pi^2)$; we keep it as a free parameter.

In practice, log term complicates the computation, but does not signficantly alter the conclusions from $\varkappa = 0$.

New symmetry breaking term

With just usual symmetry breaking term,

at high T,

$$\mathcal{V}^{\text{eff}} \approx -h \phi + \frac{1}{12} y^2 T^2 \phi^2 + \dots, T \to \infty$$

The first is SB'g, the second from fermion fluctuations.

But then there is no symmetry breaking at high T,

$$\phi \sim \frac{12h}{y^2T^2} \ , \ m_{qk} \sim y\phi \sim \frac{1}{T^2}$$

Solve by adding a new temperature dependent term by hand

$$\mathcal{V}^{\text{eff}} \approx -h \phi - \frac{y}{6} m_0 T^2 \phi + \frac{1}{12} y^2 T^2 \phi^2 + \dots$$

So $\phi \sim m_0/y$ at high T, $m_{qk} \sim m_0$. In QCD, need to be bit more clever,

$$\mathcal{V}_h^T = -\frac{m_{qk}}{V} \left(\text{ tr } \frac{1}{\not \!\!\!\!D + \mu \gamma^0 + y \Phi_{ii}} \Big|_{T \neq 0} - (T = 0) \right).$$

Solution at T = 0

Consider first the SU(3) symmetric case, $h_u = h_d = h_s$.

Spectrum. 0-: singlet η ' & octet π . 0+: singlet σ and octet a_0 .

Satisfy a 't Hooft relation:

$$m_{\eta'}^2 - m_{\pi}^2 = m_{a_0}^2 - m_{\sigma}^2$$

The anomaly moves η' up from the π , but also moves σ down from the a_0 !

QCD: $\langle \Phi \rangle = (\Sigma_u, \Sigma_u, \Sigma_s)$. From:

$$f_{\pi} = 93$$
, $m_{\pi} = 140$, $m_{K} = 495$, $m_{\eta} = 540$, $m_{\eta'} = 960$

Determine:

$$\Sigma_u = 46 \; , \; \Sigma_s = 76 \; , \; h_u = (97)^3 \; , \; h_s = (305)^3 \; , \; c_A = 4560$$

$$m^2 = (538)^2 - 121 \; y^4 \; ; \; \lambda = 18 + \; 0.04 \; y^4$$

Leaves one free parameter, Yukawa coupling "y". Determine from T_{χ} .

Solution at $T \neq 0$

To eliminate u.v. divergences, lattice uses substracted condensates

$$\Delta_{u,s}^{lattice}(T) = \frac{\langle \overline{q}q \rangle_{u,T} - (m_u/m_s) \langle \overline{q}q \rangle_{s,T}}{\langle \overline{q}q \rangle_{u,0} - (m_u/m_s) \langle \overline{q}q \rangle_{s,0}}$$

In our model we use analogous quantity to fix y = 5.

$$\Delta_{u,s}^{\chi-M}(T) = \frac{\Sigma_u(T) - (h_u/h_s)\Sigma_s(T)}{\Sigma_u(0) - (h_u/h_s)\Sigma_s(0)}$$

Varying the Yukawa coupling

Meson masses vs T

Usual pattern for $m_u = m_d \neq m_s$. y = 5. $U(1)_A$ breaking persists to high T, unphysical.

Pressure, interaction measure vs T

Pressure and interaction measure, (e-3p)/T⁴, versus Lattice, Bazavov et al, 1407.6387 and Hard Thermal Loop (HTL) (blue region = change ren. scale) Andersen et al, 1511.04660

Order parameters, chiral and deconfining

But Polyakov loop from lattice Petreczky & Schadler, 1509.07874 is *much* smaller than in model.

Persistent discrepancy, as in pure gauge. To us: what's wrong with lattice loop?

Chiral matrix model:

Chiral and deconfining order parameters are *strongly* correlated

Susceptibilities, chiral and deconfining

Largest peak for up-up; strange-strange small.

In QCD, notable peaks for loop-up & loop-loop, strongly correlated with up-up

In chiral limit: loop-up suscep. *diverges*. Sasaki, Friman, Redlich ph/0611147 loop-loop and loop-antiloop finite

Baryon susceptibilities: 2nd & 4th

As evaluated at $\mu = 0$, lattice ok. Baryon $\mu_B = 3 \mu_q$.

$$\chi_n^B(T) = T^{n-4} \left. \frac{\partial^n}{\partial \mu_B^n} p(T, \mu_B) \right|_{\mu_B = 0}$$

6th order baryon susceptibility

In our model, χ_6 shows *non*-monotonic behavior near T_{χ} . In HTL, χ_6 is very small (because m=0) σ model: including change in Σ_u , but *not* in loop. Change in χ_6 *much* smaller.

Ratios of moments, vs lattice

What's up with the lattice loop?

Looked at wide variety of possible models.

Below: χ_2 from chiral matrix model, lattice,

and fitting the loop to the lattice value, then computing χ_2 .

If the lattice loop is right, then χ_2 is too small.

Suppression of color in the semi-QGP

Suppressing color in the semi-QGP

Statistical distribution functions those for imaginary chemical potential:

$$\widetilde{n}_a(E) = \frac{1}{e^{(E-iQ^a)/T} + 1}$$
 $n_{ab}(E) = \frac{1}{e^{(E-i(Q^a-Q^b))/T} - 1}$

For three colors, color chemical potential:

$$Q^{a} = \frac{2\pi T}{3} \ q(T) \ (1, -1, 0)$$

When $Q \sim T$, the *only* soft gluons have $Q^a = Q^b$: *diagonal* elements.

For N colors: ~ N² off-diagonal gluons, and ~ N diagonal gluons

In the semi-QGP, soft gluons are suppressed by 1/N.

Suppression of color near T_c

Consider energetic particles, E » T, Boltzmann statistics

$$\widetilde{n}_a(E) \sim e^{-(E-iQ^a)/T}$$
 $n_{ab}(E) \sim e^{-(E-i(Q^a-Q^b))/T}$

While the n(E)'s are complex, sums over color are real. Polyakov loop:

$$\ell = \frac{1}{N} \sum_{a=1}^{N} e^{iQ^a/T}$$

Summing over color,

$$\frac{1}{N} \sum_{a=1}^{N} \widetilde{n}_{a}(E) = e^{-E/T} \ell \qquad \frac{1}{N} \sum_{a,b=1}^{N} \widetilde{n}_{ab}(E) = e^{-E/T} \ell^{2}$$

Near T_c, where loop small, quarks suppressed by loop; gluons by loop squared.

Dileptons: unsuppressed

Hard dileptons: same!

Dileptons: off shell photon goes to quark anti-quark pair. Consider dileptons back to back, total momentum = 0.

Diagrams same, only the distribution functions change.

$$\widetilde{n}_a(E) = \frac{1}{e^{(E-iQ^a)/T} + 1}$$
 $\widetilde{n}_{-a}(E) = \frac{1}{e^{(E+iQ^a)/T} + 1}$

(Imaginary) chemical potential: sign of Q^a *flips* between q and q bar. Large E: with Boltzmann statistics,

$$\sum_{a} \tilde{n}_{a}(E)\tilde{n}_{-a}(E) \sim e^{-(E-iQ^{a})/T}e^{-(E+iQ^{a})/T} = e^{-2E/T}$$

So Qa's drop out: # dileptons identical in deconfined and confined phases!

Soft Dileptons: more in confined phase

High T: Qa=0. As E
$$\rightarrow$$
 0, # dileptons: $\widetilde{n}(0)^2 \sim \frac{1}{4}$
Fermi-Dirac dist. fnc. finite at E = 0.

In the confined phase, Polyakov loop = 0, find amazing identity:

$$\frac{1}{N} \sum_{a=1}^{N} \widetilde{n}_a(E) \widetilde{n}_{-a}(E) \sim n(E) =_{E \to 0} \frac{T}{E}$$

More dileptons in the confined phase!

Confined phase only in the pure gauge theory, but interesting point of principle.

- "Statistical confinement": quark anti-quark forms "boson", which exhibits Bose-Einstein enhancement. But *no* dynamics of confinement.
- N.B.: in dynamical quasi-particle model, as $T \rightarrow T_c$ quarks heavier, but width increases, so also obtain enhanced dilepton rate.

Dileptons

Explicitly, we computed the diagram: Here, propagators with hatched dot are just $p_0 \rightarrow p_0$ - i Q^a . Very straightforward

$$f_{\ell \overline{\ell}} = \# \text{ dileptons} \left(\frac{Q \neq 0}{Q = 0} \right)$$

$$f_{\ell\bar{\ell}} = 1 - \frac{2T}{3p} \log \frac{1 + 3\ell e^{-p_-/T} + 3\ell e^{-2p_-/T} + e^{-3p_-/T}}{1 + 3\ell e^{-p_+/T} + 3\ell e^{-2p_+/T} + e^{-3p_+/T}}$$

When Q = 0, # dileptons ~ α_{em} . Photon momentum = (E,p), $E_{\pm} = (E \pm p)/2$. Polyakov loop = ℓ : = 1 in the perturbative QGP, and = 0 in the confined phase. Above factor analogous to PNJL model,

Abishek Atreya, Sarkar, Srivastava, 1111.3027, 1404.5697, & Das, 1406.7411

Ratio # dileptons, vs T

Below ratio of # dileptons, vs T. Ratio semi-QGP/perturbative QGP. Take QCD coupling same, so only function of Qa's, taken from the lattice. Mild enhancement of dileptons at small E.

Lee, Wirstam, Zahed, Hansson, ph/9809440: Condensate in $\sim \langle A_0^2 \rangle$; equivalent to expanding to $\sim \langle Q^2 \rangle$.

Experiment: dilepton excess below the o

CERES/NA45, $\sqrt{s} = 8.8 \text{ GeV/A}$.

Below the Q, QGP small, dominated by hadronic cocktail.

Need medium broadened of to fit data: so need to fit semi-QGP to hadronic phase

Where does the o go?

As $T \rightarrow T_{\chi}$, χ symmetry \Rightarrow ϱ and a_1 spectral densities degenerate. *But how?* Brown & Rho (PRL'91) ϱ goes *down*. RDP, ph/9503328: ϱ goes *up*.

Holt, Hohler, & Rapp, 1210.7210: o and a₁ peaks *don't* move, just broaden: ?

Ayala, Dominguez, Loewe, Mizher, Zhang, 1210.2588, 1309.4135, 1405.2228: find the Q *does* move....down:(

Real photon production: strongly suppressed

Production of hard photons

Photon on the mass shell cannot go to quark anti-quark; must also emit a gluon At leading order, two processes. Compton scattering:

Pair annihilation:

Suppression in confined phase by 1/N²

In double line notation: diagram suppressed by loop unless colors of quark and anti-quark the same, a = -b:

But if a = -b, diagonal gluon, suppression of 1/N.

And, if a = -b, tracelessness of gluon implies extra factor of 1/N, or $1/N^2$ in all.

Similar suppression for Compton scattering.

Photon production: computation

Photon momentum "hard", P = (E, p), $E = p \gg T$. Denote by red lines. Internal lines can be soft, E or $p \sim T$; denote by blue lines.

Diagrams with one soft quark line:

Hatched blob: $Q^a \neq 0$

Solid blob: HTL with $Q^a \neq 0$

Exhibits logarithmic UV divergence, when

the soft quark line becomes hard.

Also two loops diagrams, in which all lines are hard.

All lines below should be hatched, with $Q^a \neq 0$.

Exhibits logarithmic IR divergence, when the gluon line becomes soft.

Strong suppression of real photons in the confined phase

Summing soft + hard, logarithms cancel. For hard photons, very simple result:

$$f_{\gamma}(Q) =$$
photons $\left(\frac{Q \neq 0}{Q = 0}\right) = 1 - 4q + \frac{10}{3}q^2 \; ; \; q = \frac{Q}{2\pi T}$

In the confined phase, $q_{conf} = 1/3$, find *huge* suppression:

$$f_{\gamma}(q_{conf}) = \frac{1}{3N^2} = \frac{1}{27}$$

Suppression is so large that it persists even to $T \sim 500$ MeV.

Landau-Pomeranchuk-Migdal

In the perturbative QGP, even at leading order in g^2 , LPM \Rightarrow need to resum an *infinite* set of ladder diagrams: Arnold, Moore & Yaffe, ph/0111107, ph/0204343

Each new rung is down by g^2 , but for soft gluon, $k \sim gT$, compensated by Bose-Einstein enhancement times energy denominator,

$$g^2 \ n(gT) \ \frac{T}{ip_0 - E_k + E_{p-k}} \sim g^2 \frac{T}{gT} \ \frac{T}{gT} \sim 1$$

Semi-QGP: only soft gluons are *diagonal*, so LPM is suppressed by 1/N.

What we did: only $2 \rightarrow 2$ processes, at leading logarithmic order.

Did compute LPM correction, term is large for N = 3.

Hydrodynamics: # dileptons

MUSIC: 3+1 hydro @ RHIC: $\sqrt{s} = 200$ GeV/A, central collisions Preliminary analysis: only ideal hydro.

Small enhancement of dileptons in semi-QGP, swamped by hadronic phase. *No* matching of semi-QGP to hadronic phase: clearly essential.

Hydrodynamics: dilepton v₂

Since # dileptons dominated by hadrons, effect on elliptic flow, v₂, small.

Hydrodynamics: # photons

In semi-QGP, far fewer photons above T_c.

Hydrodynamics: photon elliptic flow, v₂

Fewer photons near T_c in semi-QGP has a big effect on the total v₂.

Tends to bias the total v₂ to that in hadronic phase. Small "dilution" by QGP.

PHENIX vs theory: puzzle of the "missing" photons

Sources of photons: QGP, hadron gas, "primordial" = hard initial processes

PHENIX: more photons than expected?

At RHIC: "primordial" photons appear to dominate above $p_t \sim 2 \text{ GeV}$

van Hees, He, Rapp, 1404.2846

ALICE vs theory: puzzle of the "missing" photons

At LHC, "primordial" appears to dominate above $p_t \sim 1$ GeV *Again, experiment much larger than theory?*

Hadronic contribution to photons?

Dusling & Zahed, 0911.2426

Do virial expansion, need

$$\langle \pi | J_V(x) J_V(0) | \pi \rangle \; ; \; \langle \pi \pi | J_V(x) J_V(0) | \pi \pi \rangle$$

Use experimental input $(R, \tau \text{ decay})$:

find hadronic contribution much larger than other analyses;

Resolves puzzle of the "missing" photons?

Shear viscosity: strongly suppressed

Shear viscosity in the semi-QGP

Shear viscosity, η , in the complete QGP:

Arnold, Moore & Yaffe, hep-ph/0010177 & 0302165 = AMY.

Generalize to $Q \neq 0$: Boltzmann equation in background field.

$$\eta = \frac{S^2}{C}$$
 $S = \text{source}, C = \text{collision term}. Two ways of getting small } \eta$:

"Strong" QGP, large coupling $S \sim 1$, $C \sim (\text{coupling})^2 >> 1$.

 $\mathcal{N}=4$ SU(N), g^2 N = N = ∞ : $\eta/s = 1/4\pi$. Kovtun, Son & Starinets hep-th/0405231

Semi-QGP: small *loop* at *moderate* coupling: Pisarski & Hidaka, 0803.0453, 0912.0940

Pure glue: $S \sim \langle loop \rangle^2$, $C \sim g^4 \langle loop \rangle^2$

With quarks: $S \sim \langle loop \rangle$, $C \sim g^4$

Both: $\eta \sim \langle loop \rangle^2$

To leading log order: # from AMY, constant "c" beyond leading log

$$\frac{\eta}{T^3} = \frac{\#}{g^4 \log(c/g)} \, \mathcal{R}(\ell) \quad ; \quad \mathcal{R}(\ell \to 0) \sim \ell^2$$

Counting powers of $\langle loop \rangle = l \rightarrow 0$

Small shear viscosity from color evaporation

R = ratio of shear viscosity in semi-QGP/complete-QGP at *same* g, T. Two different eigenvalue distributions give *very* similar results!

Shear viscosity/entropy

Leading log shear viscosity/lattice entropy. $\alpha_s(T_c) \sim 0.3$.

Large increase from T_c to 2 T_c. Clearly need results beyond leading log.

Also need to include: quarks and gluons below T_c, hadrons above T_c. Not easy.

